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ABSTRACT 

Let (5 be  a tiling of the pla~ae such that each tile of (5 meets at most finitely many 
other tiles. Then exactly one of the following must occur: 

(1) Uncountably many boundary points of (5 belong to no nondegenerate 
edge of (5, hence (5 has ~ncountably many singular points; or 

(2) Every boundary point of (5 belongs to a nondegenerate edge of (5, 

moreover, (5 has no singtdar points. 
Furthermore, if S is the set of singular points of (5 and 

W = {t : t E bdry (5 and t belongs to no nondegenerate edge of (5}, 

then S = c l W .  

1. Introduction 

We begin with some definitions from [3] and [1]. Family (5 is a tiling for the 
plane if and only if (5 is a collection of closed topological disks having pairwise 
disjoint interiors for which LI{T: T in (5} = R 2. Certainly the boundary of a tile 
is topologically equivalent to a circle, and the intersection of two tiles is a 
compact, proper subset of their boundaries whose components are simple arcs 
and singleton point sets. Hence we define an edge (nondegenerate edge) of tiling 
(5 to be a simple arc which is a connected component of the intersection of 
finitely many tiles of (5, and we define a vertex (degenerate edge) of (5 to be a 
point having this same property. Point p is a singular point in tiling (5 if and only 
if every neighborhood of p meets infinitely many tiles of (5, and a tiling having no 

singular points is said to be locally finite. The reader is referred to [2] for a 
complete discussion of these ideas and for many illustrative examples. 
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Let W denote the set of points in {bdry T : T  in (S} which belong to no 

nondegenerate edge of (~, and let S be the set of singular points of (S. In [1], the 

relationship between W and S was studied, and it was proved that W is 

countable if and only if S is countable. While in general W _C S, the reverse 

inclusion fails, and in fact an example in [1] shows that W may be empty while S 

is infinite. 

Hence we see that the cardinalities of W and S do not necessarily agree, and a 

challenging problem is that of characterizing those tilings for which their 

cardinalities are the same. Our purpose here is to examine one class of tilings 

having this property. In particular, let ~ be a tiling of the plane, each of whose 

members has finitely many neighbors. That is, each tile of (5 meets at most 

finitely many other tiles. Then either both W and S are uncountable or both of 

them are empty. Moreover, S = cl W in this case. 

We will use the following standard terminology throughout the paper: cl A 

and bdryA denote the closure and boundary of set A, respectively. If (S is a 

tiling of the plane, we refer to U {bdry T : T in ~} as the boundary of fS, denoted 

bdry (5. 

2. The results 

The proof of our main theorem will be accomplished by a sequence of 

preliminary lemmas. 

LEMMA 1. Let ~ be a tiling of the plane such that tile T in (~ meets at most 

finitely many other tiles. I f  x @ bdry T and x belongs to no edge (or vertex) of (~, 

then there is an arc at x in bdry T, no point of which belongs to any edge (or 

vertex) of ~. 

PRoof. Observe that since x is in no edge of f~, no other tile can contain x. 

Suppose that no arc exists satisfying the lemma. Then every arc at x in bdry T 

contains some point belonging to another tile. Hence we may select a sequence 

{xn} in bdry T converging to x with xn E T O T, for an appropriate tile T, ~ T. 

Since T meets only finitely many tiles, infinitely many of the T, sets must be 

equal, so without loss of generality assume that each T. is tile T'. However, then 

{x,} _C T O T' so x E T n T', contradicting our opening observation. Our sup- 

position is false and the lemma is satisfied. Furthermore, it is easy to see that x is 

relatively interior to such an arc. 

It is interesting to observe that Lemma 1 fails in case tile T is allowed to meet 

infinitely many tiles of ~, as Example 1 illustrates. 
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EXAMPLE 1. Let (~ be a tiling containing the tiles in Fig. 1. Point x belongs to 

no edge of (5 yet x is an isolated point having this propery. 

LEMMA 2. Let (5 be a tiling of the plane such that tile T in ~ meets at most 

finitely many other tiles. If  every point of bdry T belongs to an edge, then for every 
T', T N T' consists of finitely many components. 

PROOF. Assume on the contrary that T n T' consists of infinitely many 

components, including the countable set of components {C, : n _-> 1}, where C,~, 

follows C, relative to an order established on the orientable Jordan curve 

bdry T. Relative to this order', let D. denote the subset of bdry T which follows 

C, and precedes C,+,. Then each of C., D,,  C,+1 will be an arc. Clearly D,~Z T', 

for otherwise C, and C,+~ would not be distinct components of T N T'. 

Furthermore, an infinite subset S, of D, is disjoint from T', for otherwise two 

(closed) components of T n T' would share an endpoint, impossible. 

For each n, select x,, E S,. Since x, belongs to an edge, choose tile T, ~ T with 

x, E T,. (Clearly T, ~ T'.) For m ~ n, since our tiles are connected and simply 

connected, it is not hard to see that T,, ~ T,. However, then we have an infinite 

family {T, } of tiles which meet T, contradicting our hypothesis. We conclude that 

T n T' consists of finitely many components, and the lemma is established. 

,q 

/ 

/7 
\ 

Fig. 1. 
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LEMMA 3. Let (2 be a tiling of the plane such that tile T in (2 meets at most 

finitely many other tiles. If every point of bdry T belongs to an edge, then ]:or 

x ¢ bdry T, either x is relatively interior to an edge in bdry T or x is an endpoint for 

2 distinct nondegenerate edges in bdry T. 

PROOF. Establish an order on the orientable Jordan curve bdry T. For y and 

z distinct points in bdry T, let ~ denote the open arc in bdry T from y to z, 

relative to our order. We assume that the lemma fails, to reach a contradiction. 

Then without loss of generality, we may suppose that for every point y E 

bdry T - {x}, ~ does not belong to an edge. Choose x~ ¢ bdry T - {x}. Since x~ 

belongs to an edge, we may select tile Tj # T with x~ E Tj. Furthermore,  since 

x~x does not belong to any edge, x~x~ T~, and there must be some point 

x~_ C xtx ~ T1. By an obvious induction we obtain sequences {x,} and {T,} with 
c-, 

x, E T, and x,+~ C xnx - T,,, n => 1. Clearly the x, points are distinct. 

Since T meets at most finitely many tiles, infinitely many of the To sets must 

be the same tile, call it T'. Moreover,  by Lemma 2, T' meets T in finitely many 

components,  so for some 1 =< i < j, T~ = Tj = T', and x~, xj belong to the same 

component  of T A T'. By a previous assumption, this edge does not contain x, so 

it does not contain xjx~, and it must contain x~xj. However,  then 

xj ,~x~xj U {x~,xj}C T N  T ' =  T N  Tj, 

impossible since xj l ff~ ~ .  We have a contradiction, our assumption must be 

false, and the lemma is established. 

REMARK. It is easy tO find examples which show that Lemmas 2 and 3 fail in 

case T is allowed to meet infinitely many tiles of (2. 

LEMMA 4. Let (2 be a tiling of the plane, and let N be any open disk. Assume 

that for every tile T in (2, T O N meets at most finitely many members of (2, and for 

each x E N n bdry (2, x belongs to some edge of (2. Then N contains no singular 

points. 

PROOF. Minor modifications in Lemmas 1, 2, and 3 above may be used to 

establish analogous results for points in N N bdry (2. To prove Lemma 4, we 

assume on the contrary that N contains the singular point x of (2, where 

x E bdry T for tile T. Certainly x cannot be relatively interior to an edge in 

bdryT,  so by an adaptation of Lemma 3, x must be an endpoint for 2 

nondegenerate edges in bdry T. Hence there exist tiles T~ and T~ such that x 

belongs to a nondegenerate component  of T N T~ and similarly x belongs to a 

nondegenerate component  of T O T(. Clearly T~ ~ T~. Again by Lemma 3, x 
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must be an endpoint for 2 distinct nondegenerate edges in bdry T~. One of these 
is the edge contributed by T N TI (already mentioned), and the other is an edge 

contributed by T1 n '/'2 for some tile T2. Moreover,  since x is a singular point and 

since our tiles are simply connected, T2 ¢ T, TI.' Repeat  for T', to obtain T'2. By 

an obvious induction, we obtain infinitely many tiles T,, T', containing x, 

contradicting our hypothesis. Our assumption is false, and we conclude that 

there are no singular points in N. 

We are ready to establish the following theorem. 

THEOREM 1. Let (S be a tiling of the plane such that each tile of ~ meets at 

most finitely many other tiles. Then exactly one of the following must occur: 
(1) Uncountably many bou~adary points of ~ belong to no nondegenerate edge 

of (S, hence ~ has uncountably many singular points; or 
(2) Every boundary point of (~ belongs to a nondegenerate edge of (S, moreover, 
has no singular points. 

PROOF. If uncountably many boundary points of fS belong to no nondegener- 

ate edge, then since each of these points is a singular point ([1, Lemma 1]), the 

set of singular points of fS is uncountable, and condition (1) above is satisfied. 

Otherwise, at most countably many boundary points of fS belong to no 

nondegenerate edge. In this case, certainly at most countably many boundary 
points of ~ belong to no edge (or vertex) of (S, so by Lemma 1, every boundary 
point of (S must belong to an edge of (S. However,  then Lemma 4 implies that 

has no singular points, and condition (2) holds. 

Moreover, our lemmas may be used to examine the relationship between the 

set W of boundary points of (3~ belonging to no nondegenerate edge of fS and set 

S of singular points of ~. For general tilings, W _C S but the reverse inclusion is 

false, and in fact W may be empty while S is infinite. (See [1, Example 1].) 

However,  in our setting, cl W = S. 

THEOREM 2. Let f~ be a tiling of the plane such that each tile of (5. meets at 

most finitely many other tiles. If W is the set of boundary points of (S belonging to 
no nondegenerate edge of ~ a~ld S is the set of singular points of ~, then cl W = S. 

PROOF. By [1, Lemma 1], W C_ S, so cl W C_ S. To establish the reverse 

inclusion, let x belong to R 2 _. cl W to show that x is not a singular point. Select 

a neighborhood N of x disjc,int from cl W. Then for every z @ N n bdry ~, z 

belongs to some edge of ~. By Lemma 4, N contains no singular points of ~, so 

x E R2 ~ S. Hence S C_ cl IV, and the sets are equal 
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It is interesting to observe that even in our setting, S ~  W, as Example 2 

illustrates. 

EXAMPLE 2. Let ~ be the collection of copies of the unit square C 

[0, 1] x [0, 1] arranged in checkerboard fashion. For n => 3, let 

a .  =[1/n,½]x[1/n, l - l /n] ,  a ' . = [ ½ , 1 - 1 / n ] x [ l / n , l - 1 / n ] ,  

and define tiles B,, B" as follows: B3 = A3, B~ = A~, and for n _->4, 

B, = c I ( A , -  A. ,), B ' = c l ( A ' , - A ' _ , ) .  

Finally, define fS to be the tiling of the plane consisting of tiles in ~ -  {C} 

together with tiles in {B,, B', : n => 3}. (See Fig. 2.) 
Clearly each tile in ~ meets at most finitely many other tiles. However,  each 

vertex c~ of C, 1 =< i _-< 4, is a singular point of ~, which belongs to a nondegener- 

ate edge. 

Our final theorem strengthens the result in Theorem 2. 

THEOREM 3. Let (S be a tiling of the plane such that each tile of ~ meets at 
most finitely many other tiles. If U is the set of boundary points of (~ belonging to 
no edge or vertex of (S and S is the set of singular points of (S, then cl U = S. 

Ca = 

C l  = 

(0, 1) 

(o, o) 

t34j B~ 
t 

B' 3 

f 

i 

c~= (1,1) 

c:= (1,0) 

Fig. 2. 
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PROOF. By remarks in Theorem 2, it suffices to show that for x in S, there is a 

sequence {z.} in U converging to x. To begin, observe that for some tile T 

containing x, x is an endpoint for at most one nondegenerate  edge in bdry T: 

For if x were an endpoint for two such edges in every tile containing x, then an 

argument like the one in Lemma 4 would yield infinitely many tiles at x, clearly 

impossible. Hence for some lile T and for an arc A at x in bdry T. A neither 

contains nor is contained in a nondegenerate  edge at x. 

In case some subarc of A ;at x has no point (except possibly x)  belonging to 

any edge or vertex, then the lemma is satisfied. Hence we assume that this does 

not occur. Then there is a sequence {x~} in A - {x} converging to x. with each x,, 

in some edge or vertex of (5. For future reference, assume that x. . ,  follows x. 

relative to the order establi,;hed on the Jordan curve bdry T, and let x.x.+, 

denote the open arc in bdry 7" from x. to x.,  ,, relative to this order. Each point 

x. belongs to some tile T. ~ T, and since T meets at most finitely many tiles in 

all, by passing to an appropriate  subsequence, we may assume that T,, = T '  for 

every n. Of course x E T' ,  too. 

By our choice of A, T n T '  n A cannot consist of finitely many components  in 

any neighborhood of x : Otherwise, infinitely many x. points would belong to the 

same component ,  and x would lie in this component ,  giving a nondegenerate  

edge at x either containing A or contained in A, impossible. Thus for every N, 

there is some n > N such that x.x.+~ contains a point z . ~  T' .  

Relabeling the z points if necessary, we obtain a sequence {z.} C_ A - T'  with 

{z.} converging to x. Now if infinitely many z. points should belong to edges (or 

vertices) of fS, then there would be a subsequence {z'.} of {z.} and a correspond- 

ing sequence {S.} in ( S - { T ,  F'} with z ' . E  S.. Furthermore,  since our tiles are 

connected and simply connected, the S. tiles would be distinct, forcing T to 

meet  infinitely many tiles. Since this cannot occur, we conclude that at most 

finitely many z° points belong to edges of (S. Hence for M sufficiently large, the 

sequence {z. "n > M} lies in U. By our preliminary remarks,  the theorem is 

established. 
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